Nuprl Lemma : rmul_preserves_rleq3

[x,y,a,b:ℝ].  ((x y) ≤ (a b)) supposing ((x ≤ a) and (y ≤ b) and ((r0 ≤ x) ∧ (r0 ≤ y)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q guard: {T} rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B prop: uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  rmul_preserves_rleq2 rleq_transitivity int-to-real_wf le_witness_for_triv rleq_wf real_wf rmul_wf itermSubtract_wf itermMultiply_wf itermVar_wf rleq_functionality req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality_wrt_implies rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis natural_numberEquality promote_hyp sqequalRule lambdaEquality_alt dependent_functionElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType universeIsType isect_memberEquality_alt isectIsTypeImplies productIsType because_Cache approximateComputation int_eqEquality voidElimination

Latex:
\mforall{}[x,y,a,b:\mBbbR{}].    ((x  *  y)  \mleq{}  (a  *  b))  supposing  ((x  \mleq{}  a)  and  (y  \mleq{}  b)  and  ((r0  \mleq{}  x)  \mwedge{}  (r0  \mleq{}  y)))



Date html generated: 2019_10_29-AM-09_38_11
Last ObjectModification: 2019_02_04-AM-10_02_05

Theory : reals


Home Index