Nuprl Lemma : rpositive-int

[n:ℤ]. uiff(rpositive(r(n));0 < n)


Proof




Definitions occuring in Statement :  rpositive: rpositive(x) int-to-real: r(n) less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n int:
Definitions unfolded in proof :  int-to-real: r(n) rpositive: rpositive(x) uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_exists: x:{A| B[x]} member: t ∈ T prop: so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties nat_plus_subtype_nat mul_preserves_le decidable__lt member-less_than less_than_wf nat_plus_wf sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation cut sqequalHypSubstitution setElimination thin rename hypothesis lemma_by_obid isectElimination lambdaEquality natural_numberEquality multiplyEquality hypothesisEquality introduction independent_isectElimination intEquality dependent_functionElimination unionElimination because_Cache applyEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberFormation dependent_set_memberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[n:\mBbbZ{}].  uiff(rpositive(r(n));0  <  n)



Date html generated: 2016_05_18-AM-07_02_04
Last ObjectModification: 2016_01_17-AM-01_49_02

Theory : reals


Home Index