Nuprl Lemma : rv-be-five-segment
∀a,b,c,d,A,B,C,D:ℝ^2. (a ≠ b
⇒ a_b_c
⇒ A_B_C
⇒ ab=AB
⇒ bc=BC
⇒ ad=AD
⇒ bd=BD
⇒ cd=CD)
Proof
Definitions occuring in Statement :
rv-be: a_b_c
,
real-vec-sep: a ≠ b
,
rv-congruent: ab=cd
,
real-vec: ℝ^n
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
all: ∀x:A. B[x]
,
stable: Stable{P}
,
uimplies: b supposing a
,
or: P ∨ Q
,
rv-be: a_b_c
,
cand: A c∧ B
,
uiff: uiff(P;Q)
,
iff: P
⇐⇒ Q
,
rv-congruent: ab=cd
,
guard: {T}
,
subtype_rel: A ⊆r B
,
rev_implies: P
⇐ Q
Lemmas referenced :
rv-five-segment,
false_wf,
le_wf,
rv-congruent_wf,
rv-be_wf,
real-vec-sep_wf,
real-vec_wf,
stable_rv-congruent,
or_wf,
rv-between_wf,
not_wf,
minimal-double-negation-hyp-elim,
minimal-not-not-excluded-middle,
rv-congruent-preserves-sep,
not-real-vec-sep-iff-eq,
rv-congruent_functionality,
req-vec_weakening,
req_inversion,
real-vec-dist_wf,
rv-congruent-implies-eq,
rv-between_functionality,
rv-between-symmetry,
rv-between-sep,
not-real-vec-sep-refl,
req-vec_inversion
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation,
hypothesis,
hypothesisEquality,
functionEquality,
because_Cache,
independent_isectElimination,
independent_functionElimination,
unionElimination,
voidElimination,
dependent_functionElimination,
productElimination,
applyEquality
Latex:
\mforall{}a,b,c,d,A,B,C,D:\mBbbR{}\^{}2. (a \mneq{} b {}\mRightarrow{} a\_b\_c {}\mRightarrow{} A\_B\_C {}\mRightarrow{} ab=AB {}\mRightarrow{} bc=BC {}\mRightarrow{} ad=AD {}\mRightarrow{} bd=BD {}\mRightarrow{} cd=CD)
Date html generated:
2017_10_03-AM-11_32_25
Last ObjectModification:
2017_08_11-PM-06_45_29
Theory : reals
Home
Index