Nuprl Lemma : rv-five-segment

[n:ℕ]. ∀[a,b,c,d,A,B,C,D:ℝ^n].  (cd=CD) supposing (bd=BD and ad=AD and bc=BC and ab=AB and A-B-C and a-b-c)


Proof




Definitions occuring in Statement :  rv-between: a-b-c rv-congruent: ab=cd real-vec: ^n nat: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  rv-congruent: ab=cd rv-between: a-b-c uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q subtype_rel: A ⊆B prop: implies:  Q all: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) real-vec-between: a-b-c exists: x:A. B[x] let: let top: Top iff: ⇐⇒ Q rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 rneq: x ≠ y or: P ∨ Q guard: {T} cand: c∧ B real-vec-sep: a ≠ b so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  req_witness real-vec-dist_wf real_wf rleq_wf int-to-real_wf req_wf real-vec-between_wf real-vec-sep_wf real-vec_wf nat_wf rsqrt_wf rnexp2-nonneg rnexp_wf false_wf le_wf square-nonneg rmul_wf req_weakening rsqrt_functionality uiff_transitivity req_functionality rnexp2 rsqrt-of-square rnexp_functionality real-vec-dist-symmetry rv-five-segment-lemma member_rooint_lemma radd-preserves-rless rsub_wf rless_functionality radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 rdiv_wf rless_wf req_transitivity radd_functionality rmul_functionality rsub_functionality real-vec-dist-between-2 real-vec-add_wf real-vec-mul_wf rabs_wf real-vec-dist_functionality req-vec_weakening req-vec_inversion req_inversion req-vec_wf rooint_wf i-member_wf real-vec-dist-between rleq_weakening_rless rabs-of-nonneg set_wf equal_wf rmul_preserves_req rdiv_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry productEquality dependent_functionElimination dependent_set_memberEquality independent_pairFormation lambdaFormation independent_isectElimination voidElimination voidEquality computeAll int_eqEquality intEquality inlFormation dependent_pairFormation inrFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c,d,A,B,C,D:\mBbbR{}\^{}n].
    (cd=CD)  supposing  (bd=BD  and  ad=AD  and  bc=BC  and  ab=AB  and  A-B-C  and  a-b-c)



Date html generated: 2017_10_03-AM-11_19_51
Last ObjectModification: 2017_07_28-AM-08_26_15

Theory : reals


Home Index