Nuprl Lemma : rv-five-segment
∀[n:ℕ]. ∀[a,b,c,d,A,B,C,D:ℝ^n].  (cd=CD) supposing (bd=BD and ad=AD and bc=BC and ab=AB and A-B-C and a-b-c)
Proof
Definitions occuring in Statement : 
rv-between: a-b-c
, 
rv-congruent: ab=cd
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rv-congruent: ab=cd
, 
rv-between: a-b-c
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
let: let, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
guard: {T}
, 
cand: A c∧ B
, 
real-vec-sep: a ≠ b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
req_witness, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
real-vec-between_wf, 
real-vec-sep_wf, 
real-vec_wf, 
nat_wf, 
rsqrt_wf, 
rnexp2-nonneg, 
rnexp_wf, 
false_wf, 
le_wf, 
square-nonneg, 
rmul_wf, 
req_weakening, 
rsqrt_functionality, 
uiff_transitivity, 
req_functionality, 
rnexp2, 
rsqrt-of-square, 
rnexp_functionality, 
real-vec-dist-symmetry, 
rv-five-segment-lemma, 
member_rooint_lemma, 
radd-preserves-rless, 
rsub_wf, 
rless_functionality, 
radd_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rdiv_wf, 
rless_wf, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
rsub_functionality, 
real-vec-dist-between-2, 
real-vec-add_wf, 
real-vec-mul_wf, 
rabs_wf, 
real-vec-dist_functionality, 
req-vec_weakening, 
req-vec_inversion, 
req_inversion, 
req-vec_wf, 
rooint_wf, 
i-member_wf, 
real-vec-dist-between, 
rleq_weakening_rless, 
rabs-of-nonneg, 
set_wf, 
equal_wf, 
rmul_preserves_req, 
rdiv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
computeAll, 
int_eqEquality, 
intEquality, 
inlFormation, 
dependent_pairFormation, 
inrFormation
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a,b,c,d,A,B,C,D:\mBbbR{}\^{}n].
    (cd=CD)  supposing  (bd=BD  and  ad=AD  and  bc=BC  and  ab=AB  and  A-B-C  and  a-b-c)
Date html generated:
2017_10_03-AM-11_19_51
Last ObjectModification:
2017_07_28-AM-08_26_15
Theory : reals
Home
Index