Nuprl Lemma : square-req-1-iff
∀x:ℝ. (x ≠ -(r1) ⇒ (x^2 = r1 ⇐⇒ x = r1))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rnexp: x^k1, 
req: x = y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
or: P ∨ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uimplies: b supposing a
Lemmas referenced : 
iff_wf, 
all_wf, 
le_wf, 
false_wf, 
rnexp_wf, 
square-is-one, 
real_wf, 
rneq_wf, 
rminus_wf, 
int-to-real_wf, 
req_wf, 
or_wf, 
req_inversion, 
req_weakening, 
rneq_functionality, 
rneq_irreflexivity
Rules used in proof : 
functionEquality, 
lambdaEquality, 
sqequalRule, 
dependent_set_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
impliesFunctionality, 
allFunctionality, 
addLevel, 
inlFormation, 
natural_numberEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
hypothesis, 
thin, 
unionElimination, 
sqequalHypSubstitution, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut, 
independent_isectElimination, 
because_Cache, 
voidElimination
Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  -(r1)  {}\mRightarrow{}  (x\^{}2  =  r1  \mLeftarrow{}{}\mRightarrow{}  x  =  r1))
Date html generated:
2017_10_03-AM-08_50_39
Last ObjectModification:
2017_08_02-PM-03_11_59
Theory : reals
Home
Index