Nuprl Lemma : sublevelset-closed

I:Interval. ∀[f:I ⟶ℝ]. ∀[c:ℝ].  (i-closed(I)  f(x) continuous for x ∈  closed-rset(sublevelset(I;f;c)))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I sublevelset: sublevelset(I;f;c) r-ap: f(x) rfun: I ⟶ℝ i-closed: i-closed(I) interval: Interval closed-rset: closed-rset(A) real: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q closed-rset: closed-rset(A) member-closure: y ∈ closure(A) exists: x:A. B[x] sublevelset: sublevelset(I;f;c) and: P ∧ Q member: t ∈ T cand: c∧ B prop: so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ uimplies: supposing a sq_stable: SqStable(P) squash: T so_apply: x[s] guard: {T}
Lemmas referenced :  continuous-limit rleq-limit-constant all_wf converges-to_wf and_wf nat_wf interval_wf rfun_wf i-closed_wf i-member_wf real_wf sq_stable__i-member r-ap_wf continuous_wf sublevelset_wf member-closure_wf i-closed-closed
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution productElimination thin sqequalRule cut lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis independent_pairFormation isectElimination because_Cache lambdaEquality setElimination rename independent_isectElimination introduction imageMemberEquality baseClosed imageElimination setEquality dependent_pairFormation applyEquality

Latex:
\mforall{}I:Interval
    \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].  \mforall{}[c:\mBbbR{}].    (i-closed(I)  {}\mRightarrow{}  f(x)  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  closed-rset(sublevelset(I;f;c)))



Date html generated: 2016_05_18-AM-09_21_22
Last ObjectModification: 2016_01_17-AM-02_41_34

Theory : reals


Home Index