Nuprl Lemma : total-function-limit

f:ℝ ⟶ ℝ. ∀y:ℝ. ∀x:ℕ ⟶ ℝ.  ((∀x,y:ℝ.  ((x y)  (f[x] f[y])))  lim n→∞.x[n]  lim n→∞.f[x[n]] f[y])


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B rfun: I ⟶ℝ top: Top uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: uimplies: supposing a implies:  Q r-ap: f(x) true: True
Lemmas referenced :  continuous-limit riiint_wf member_riiint_lemma subtype_rel_dep_function real_wf true_wf subtype_rel_self set_wf all_wf req_wf nat_wf function-is-continuous iproper-riiint i-member_wf converges-to_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis lambdaFormation hypothesisEquality applyEquality sqequalRule isect_memberEquality voidElimination voidEquality isectElimination lambdaEquality setEquality independent_isectElimination setElimination rename because_Cache independent_functionElimination functionEquality functionExtensionality natural_numberEquality

Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}y:\mBbbR{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  y  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f[x[n]]  =  f[y])



Date html generated: 2016_10_26-AM-09_52_10
Last ObjectModification: 2016_09_05-AM-08_42_16

Theory : reals


Home Index