Nuprl Lemma : trivial-bdd-diff

[f,g:ℕ+ ⟶ ℤ].  bdd-diff(f;g) supposing ∀n:ℕ+((f n) (g n) ∈ ℤ)


Proof




Definitions occuring in Statement :  bdd-diff: bdd-diff(f;g) nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] bdd-diff: bdd-diff(f;g) exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q top: Top absval: |i| subtract: m
Lemmas referenced :  zero-mul add-mul-special minus-one-mul iff_weakening_equal nat_wf true_wf squash_wf equal_wf all_wf subtract_wf absval_wf less_than'_wf le_wf false_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis lemma_by_obid rename dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation isectElimination productElimination independent_pairEquality voidElimination applyEquality because_Cache equalityTransitivity equalitySymmetry setElimination intEquality functionEquality imageElimination imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination isect_memberEquality voidEquality

Latex:
\mforall{}[f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    bdd-diff(f;g)  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  ((f  n)  =  (g  n))



Date html generated: 2016_05_18-AM-06_46_20
Last ObjectModification: 2016_01_17-AM-01_45_18

Theory : reals


Home Index