Nuprl Lemma : trivial-bdd-diff
∀[f,g:ℕ+ ⟶ ℤ].  bdd-diff(f;g) supposing ∀n:ℕ+. ((f n) = (g n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
bdd-diff: bdd-diff(f;g)
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
bdd-diff: bdd-diff(f;g)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
absval: |i|
, 
subtract: n - m
Lemmas referenced : 
zero-mul, 
add-mul-special, 
minus-one-mul, 
iff_weakening_equal, 
nat_wf, 
true_wf, 
squash_wf, 
equal_wf, 
all_wf, 
subtract_wf, 
absval_wf, 
less_than'_wf, 
le_wf, 
false_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
rename, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
isectElimination, 
productElimination, 
independent_pairEquality, 
voidElimination, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
intEquality, 
functionEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}[f,g:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    bdd-diff(f;g)  supposing  \mforall{}n:\mBbbN{}\msupplus{}.  ((f  n)  =  (g  n))
Date html generated:
2016_05_18-AM-06_46_20
Last ObjectModification:
2016_01_17-AM-01_45_18
Theory : reals
Home
Index