Nuprl Lemma : ln-req
∀[a:{a:ℝ| r0 < a} ]. (ln(a) = rlog(a))
Proof
Definitions occuring in Statement : 
ln: ln(a), 
rlog: rlog(x), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ln_wf, 
rless_wf, 
int-to-real_wf, 
set_wf, 
real_wf, 
req_wf, 
rlog_wf, 
sq_stable__req, 
equal_wf, 
req_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
lambdaFormation, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setEquality
Latex:
\mforall{}[a:\{a:\mBbbR{}|  r0  <  a\}  ].  (ln(a)  =  rlog(a))
Date html generated:
2017_10_04-PM-10_35_33
Last ObjectModification:
2017_06_06-AM-10_55_16
Theory : reals_2
Home
Index