Nuprl Lemma : ln-req
∀[a:{a:ℝ| r0 < a} ]. (ln(a) = rlog(a))
Proof
Definitions occuring in Statement :
ln: ln(a)
,
rlog: rlog(x)
,
rless: x < y
,
req: x = y
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
sq_stable: SqStable(P)
,
squash: ↓T
,
subtype_rel: A ⊆r B
Lemmas referenced :
ln_wf,
rless_wf,
int-to-real_wf,
set_wf,
real_wf,
req_wf,
rlog_wf,
sq_stable__req,
equal_wf,
req_witness
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
setElimination,
rename,
dependent_set_memberEquality,
hypothesisEquality,
hypothesis,
isectElimination,
natural_numberEquality,
sqequalRule,
lambdaEquality,
because_Cache,
lambdaFormation,
independent_functionElimination,
imageMemberEquality,
baseClosed,
imageElimination,
equalityTransitivity,
equalitySymmetry,
applyEquality,
setEquality
Latex:
\mforall{}[a:\{a:\mBbbR{}| r0 < a\} ]. (ln(a) = rlog(a))
Date html generated:
2017_10_04-PM-10_35_33
Last ObjectModification:
2017_06_06-AM-10_55_16
Theory : reals_2
Home
Index