Nuprl Lemma : req-rcos-and-rsin-implies
∀x,y:ℝ.  ((rsin(x) = rsin(y)) ⇒ (rcos(x) = rcos(y)) ⇒ (∃n:ℤ. ((x - y) = 2 * n * π)))
Proof
Definitions occuring in Statement : 
pi: π, 
rcos: rcos(x), 
rsin: rsin(x), 
int-rmul: k1 * a, 
rsub: x - y, 
req: x = y, 
real: ℝ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
multiply: n * m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rcos-is-1-iff, 
rsub_wf, 
req_wf, 
rcos_wf, 
rsin_wf, 
real_wf, 
int-to-real_wf, 
radd_wf, 
rmul_wf, 
rnexp_wf, 
istype-void, 
istype-le, 
rsin-rcos-pythag, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
rcos-rsub, 
radd_functionality, 
rmul_functionality, 
req_weakening, 
req_inversion, 
rnexp2, 
radd_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
sqequalRule, 
voidElimination, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}x,y:\mBbbR{}.    ((rsin(x)  =  rsin(y))  {}\mRightarrow{}  (rcos(x)  =  rcos(y))  {}\mRightarrow{}  (\mexists{}n:\mBbbZ{}.  ((x  -  y)  =  2  *  n  *  \mpi{})))
Date html generated:
2019_10_31-AM-06_06_45
Last ObjectModification:
2019_05_17-PM-03_55_26
Theory : reals_2
Home
Index