Nuprl Lemma : rleq*_antisymmetry
∀x,y:ℝ*.  (x ≤ y ⇒ y ≤ x ⇒ x = y)
Proof
Definitions occuring in Statement : 
rleq*: x ≤ y, 
req*: x = y, 
real*: ℝ*, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rleq*: x ≤ y, 
rrel*: R*(x,y), 
exists: ∃x:A. B[x], 
req*: x = y, 
member: t ∈ T, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
real*: ℝ*, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
int_upper: {i...}
Lemmas referenced : 
imax_wf, 
imax_nat, 
nat_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
le_wf, 
int_upper_wf, 
all_wf, 
req_wf, 
int_upper_subtype_nat, 
rleq*_wf, 
real*_wf, 
int_upper_subtype_int_upper, 
imax_ub, 
int_upper_properties, 
rleq_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
sqequalRule, 
dependent_set_memberEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
because_Cache, 
applyEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}x,y:\mBbbR{}*.    (x  \mleq{}  y  {}\mRightarrow{}  y  \mleq{}  x  {}\mRightarrow{}  x  =  y)
Date html generated:
2018_05_22-PM-03_19_31
Last ObjectModification:
2017_10_06-PM-05_09_04
Theory : reals_2
Home
Index