Nuprl Lemma : rleq*_weakening_rless
∀[x,y:ℝ*].  (x < y ⇒ x ≤ y)
Proof
Definitions occuring in Statement : 
rleq*: x ≤ y, 
rless*: x < y, 
real*: ℝ*, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
rless*: x < y, 
rrel*: R*(x,y), 
exists: ∃x:A. B[x], 
rleq*: x ≤ y, 
member: t ∈ T, 
all: ∀x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
real*: ℝ*, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
rge: x ≥ y, 
guard: {T}, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
and: P ∧ Q, 
not: ¬A, 
false: False, 
real: ℝ, 
prop: ℙ, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
rleq_functionality_wrt_implies, 
int_upper_subtype_nat, 
rleq_weakening_rless, 
rleq_weakening_equal, 
rleq_weakening, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
int_upper_wf, 
all_wf, 
rleq_wf, 
rless*_wf, 
real*_wf, 
itermSubtract_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
int-to-real_wf, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
sqequalRule, 
hypothesisEquality, 
introduction, 
cut, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
independent_pairEquality, 
voidElimination, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality
Latex:
\mforall{}[x,y:\mBbbR{}*].    (x  <  y  {}\mRightarrow{}  x  \mleq{}  y)
Date html generated:
2018_05_22-PM-03_19_48
Last ObjectModification:
2017_10_06-PM-05_12_19
Theory : reals_2
Home
Index