Nuprl Lemma : sp-join_wf

[f,g:Sierpinski].  (f ∨ g ∈ Sierpinski)


Proof




Definitions occuring in Statement :  sp-join: f ∨ g Sierpinski: Sierpinski uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Sierpinski: Sierpinski quotient: x,y:A//B[x; y] and: P ∧ Q sp-join: f ∨ g so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a iff: ⇐⇒ Q all: x:A. B[x] implies:  Q prop: rev_implies:  Q uiff: uiff(P;Q) not: ¬A false: False or: P ∨ Q guard: {T} assert: b ifthenelse: if then else fi  bor: p ∨bq Sierpinski-bottom: bfalse: ff
Lemmas referenced :  Sierpinski_wf quotient-member-eq nat_wf bool_wf iff_wf equal-wf-T-base two-class-equiv-rel Sierpinski-bottom_wf bor_wf equal-wf-base equal-Sierpinski-bottom assert_wf assert_of_bor or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin isectElimination functionEquality lambdaEquality because_Cache hypothesisEquality baseClosed independent_isectElimination dependent_functionElimination applyEquality independent_functionElimination independent_pairFormation lambdaFormation productEquality equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality hyp_replacement applyLambdaEquality functionExtensionality voidElimination allFunctionality promote_hyp inlFormation inrFormation rename

Latex:
\mforall{}[f,g:Sierpinski].    (f  \mvee{}  g  \mmember{}  Sierpinski)



Date html generated: 2019_10_31-AM-06_35_48
Last ObjectModification: 2017_07_28-AM-09_11_59

Theory : synthetic!topology


Home Index