Nuprl Lemma : le-add-shift

[x,y,z:ℤ].  uiff(x ≤ (y z);((-y) x) ≤ z)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B add: m minus: -n int:
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T le: A ≤ B not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] all: x:A. B[x] top: Top
Lemmas referenced :  le_wf less_than'_wf le_reflexive add_functionality_wrt_le minus-one-mul add-commutes add-associates add-mul-special zero-mul zero-add add-swap add-zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination addEquality voidElimination minusEquality intEquality isect_memberEquality independent_isectElimination multiplyEquality natural_numberEquality voidEquality

Latex:
\mforall{}[x,y,z:\mBbbZ{}].    uiff(x  \mleq{}  (y  +  z);((-y)  +  x)  \mleq{}  z)



Date html generated: 2016_05_13-PM-03_31_26
Last ObjectModification: 2015_12_26-AM-09_46_01

Theory : arithmetic


Home Index