Nuprl Lemma : mod2-add2
∀n:ℤ. (((n + 2) mod 2) = (n mod 2) ∈ ℤ)
Proof
Definitions occuring in Statement :
modulus: a mod n
,
all: ∀x:A. B[x]
,
add: n + m
,
natural_number: $n
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
top: Top
,
sq_type: SQType(T)
,
implies: P
⇒ Q
,
guard: {T}
,
true: True
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
false: False
,
prop: ℙ
,
or: P ∨ Q
,
ifthenelse: if b then t else f fi
,
eq_int: (i =z j)
,
btrue: tt
,
bfalse: ff
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
subtype_base_sq,
int_subtype_base,
add-commutes,
add-associates,
add-swap,
modulus_wf,
equal-wf-base,
true_wf,
nequal_wf,
mod2-cases,
equal_wf,
squash_wf,
mod2-add1,
ifthenelse_wf,
bool_wf,
eq_int_wf,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
instantiate,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
hypothesis,
sqequalRule,
hypothesisEquality,
natural_numberEquality,
applyEquality,
lambdaEquality,
isect_memberEquality,
voidElimination,
voidEquality,
because_Cache,
addEquality,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
dependent_set_memberEquality,
addLevel,
baseClosed,
unionElimination,
imageElimination,
universeEquality,
imageMemberEquality,
productElimination
Latex:
\mforall{}n:\mBbbZ{}. (((n + 2) mod 2) = (n mod 2))
Date html generated:
2018_07_25-PM-01_27_43
Last ObjectModification:
2018_06_07-PM-04_56_45
Theory : arithmetic
Home
Index