Nuprl Lemma : mod2-add2
∀n:ℤ. (((n + 2) mod 2) = (n mod 2) ∈ ℤ)
Proof
Definitions occuring in Statement : 
modulus: a mod n
, 
all: ∀x:A. B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
true: True
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
or: P ∨ Q
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
btrue: tt
, 
bfalse: ff
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
add-commutes, 
add-associates, 
add-swap, 
modulus_wf, 
equal-wf-base, 
true_wf, 
nequal_wf, 
mod2-cases, 
equal_wf, 
squash_wf, 
mod2-add1, 
ifthenelse_wf, 
bool_wf, 
eq_int_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
addEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
addLevel, 
baseClosed, 
unionElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
productElimination
Latex:
\mforall{}n:\mBbbZ{}.  (((n  +  2)  mod  2)  =  (n  mod  2))
Date html generated:
2018_07_25-PM-01_27_43
Last ObjectModification:
2018_06_07-PM-04_56_45
Theory : arithmetic
Home
Index