Nuprl Lemma : mod2-add1

n:ℤ(((n 1) mod 2) if (n mod =z 0) then else fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  modulus: mod n ifthenelse: if then else fi  eq_int: (i =z j) all: x:A. B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: exists: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False subtype_rel: A ⊆B top: Top iff: ⇐⇒ Q rev_implies:  Q subtract: m or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b decidable: Dec(P) le: A ≤ B
Lemmas referenced :  div_floor_mod_sum less_than_wf subtract_wf div_floor_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf modulus_wf equal_wf two-mul mul-commutes squash_wf add_functionality_wrt_eq subtype_rel_self iff_weakening_equal add-associates minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes mul-distributes-right minus-add rem-exact mod2-cases eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot decidable__int_equal false_wf not-equal-2 le_antisymmetry_iff condition-implies-le minus-zero zero-add add_functionality_wrt_le le-add-cancel minus-minus mul-associates le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis intEquality independent_pairFormation introduction extract_by_obid sqequalHypSubstitution isectElimination thin addEquality hypothesisEquality natural_numberEquality dependent_set_memberEquality sqequalRule imageMemberEquality baseClosed because_Cache dependent_pairFormation addLevel instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseApply closedConclusion applyEquality lambdaEquality isect_memberEquality voidEquality multiplyEquality equalityUniverse levelHypothesis imageElimination universeEquality productElimination minusEquality promote_hyp unionElimination equalityElimination impliesFunctionality

Latex:
\mforall{}n:\mBbbZ{}.  (((n  +  1)  mod  2)  =  if  (n  mod  2  =\msubz{}  0)  then  1  else  0  fi  )



Date html generated: 2018_07_25-PM-01_27_40
Last ObjectModification: 2018_06_07-AM-10_00_47

Theory : arithmetic


Home Index