Nuprl Lemma : consistent-seq_wf

[T:Type]. ∀[R:n:ℕ ⟶ (ℕn ⟶ T) ⟶ T ⟶ ℙ]. ∀[n:ℕ].  (R-consistent-seq(n) ∈ Type)


Proof




Definitions occuring in Statement :  consistent-seq: R-consistent-seq(n) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T consistent-seq: R-consistent-seq(n) nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] guard: {T}
Lemmas referenced :  int_seg_wf all_wf int_seg_subtype_nat false_wf subtype_rel_dep_function subtype_rel_sets and_wf le_wf less_than_wf less_than_transitivity2 le_weakening2 nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis cumulativity because_Cache lambdaEquality applyEquality independent_isectElimination independent_pairFormation lambdaFormation intEquality productElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].    (R-consistent-seq(n)  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_48_45
Last ObjectModification: 2015_12_26-AM-10_18_09

Theory : bar-induction


Home Index