Nuprl Lemma : consistent-seq_wf
∀[T:Type]. ∀[R:n:ℕ ⟶ (ℕn ⟶ T) ⟶ T ⟶ ℙ]. ∀[n:ℕ].  (R-consistent-seq(n) ∈ Type)
Proof
Definitions occuring in Statement : 
consistent-seq: R-consistent-seq(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
consistent-seq: R-consistent-seq(n)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
int_seg_wf, 
all_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
and_wf, 
le_wf, 
less_than_wf, 
less_than_transitivity2, 
le_weakening2, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
cumulativity, 
because_Cache, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
intEquality, 
productElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[n:\mBbbN{}].    (R-consistent-seq(n)  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_48_45
Last ObjectModification:
2015_12_26-AM-10_18_09
Theory : bar-induction
Home
Index