Nuprl Lemma : project-seq_wf

[T:ℕ ⟶ Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ (i:ℕ × T[i])].  project-seq(s) ∈ i:ℕn ⟶ T[i] supposing ∀i:ℕn. ((fst((s i))) i ∈ ℤ)


Proof




Definitions occuring in Statement :  project-seq: project-seq(s) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  not: ¬A false: False less_than': less_than'(a;b) guard: {T} sq_type: SQType(T) sq_stable: SqStable(P) squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] nat: pi2: snd(t) pi1: fst(t) implies:  Q project-seq: project-seq(s) all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-false int_seg_subtype_nat subtype_rel_self istype-le sq_stable__le subtype_base_sq istype-universe istype-nat less_than_wf and_wf int_subtype_base le_wf set_subtype_base nat_wf pi1_wf istype-int int_seg_wf
Rules used in proof :  independent_pairFormation dependent_set_memberEquality_alt baseClosed imageMemberEquality cumulativity universeEquality instantiate productIsType isectIsTypeImplies isect_memberEquality_alt sqequalBase imageElimination independent_isectElimination intEquality lambdaEquality_alt rename setElimination natural_numberEquality isectElimination extract_by_obid universeIsType functionIsType axiomEquality because_Cache independent_functionElimination equalitySymmetry equalityTransitivity equalityIstype productElimination lambdaFormation_alt hypothesis inhabitedIsType applyEquality sqequalRule hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution functionExtensionality cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:\mBbbN{}  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  (i:\mBbbN{}  \mtimes{}  T[i])].
    project-seq(s)  \mmember{}  i:\mBbbN{}n  {}\mrightarrow{}  T[i]  supposing  \mforall{}i:\mBbbN{}n.  ((fst((s  i)))  =  i)



Date html generated: 2019_10_15-AM-10_20_09
Last ObjectModification: 2019_10_07-PM-04_08_18

Theory : bar-induction


Home Index