Nuprl Lemma : project-seq_wf
∀[T:ℕ ⟶ Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ (i:ℕ × T[i])].  project-seq(s) ∈ i:ℕn ⟶ T[i] supposing ∀i:ℕn. ((fst((s i))) = i ∈ ℤ)
Proof
Definitions occuring in Statement : 
project-seq: project-seq(s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
sq_type: SQType(T)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
less_than: a < b
, 
le: A ≤ B
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
project-seq: project-seq(s)
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-false, 
int_seg_subtype_nat, 
subtype_rel_self, 
istype-le, 
sq_stable__le, 
subtype_base_sq, 
istype-universe, 
istype-nat, 
less_than_wf, 
and_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
nat_wf, 
pi1_wf, 
istype-int, 
int_seg_wf
Rules used in proof : 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
baseClosed, 
imageMemberEquality, 
cumulativity, 
universeEquality, 
instantiate, 
productIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
sqequalBase, 
imageElimination, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
universeIsType, 
functionIsType, 
axiomEquality, 
because_Cache, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
productElimination, 
lambdaFormation_alt, 
hypothesis, 
inhabitedIsType, 
applyEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:\mBbbN{}  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  (i:\mBbbN{}  \mtimes{}  T[i])].
    project-seq(s)  \mmember{}  i:\mBbbN{}n  {}\mrightarrow{}  T[i]  supposing  \mforall{}i:\mBbbN{}n.  ((fst((s  i)))  =  i)
Date html generated:
2019_10_15-AM-10_20_09
Last ObjectModification:
2019_10_07-PM-04_08_18
Theory : bar-induction
Home
Index