Nuprl Lemma : tcWO-induction-ext

[T:Type]. ∀[>:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.>[x;y];t.Q[t]) supposing tcWO(T;x,y.>[x;y])


Proof




Definitions occuring in Statement :  tcWO: tcWO(T;x,y.>[x; y]) TI: TI(T;x,y.R[x; y];t.Q[t]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T subtract: m isr: isr(x) bfalse: ff it: btrue: tt seq-normalize: seq-normalize(n;s) bottom: ifthenelse: if then else fi  tcWO-induction AF-induction2 AF-induction basic_strong_bar_induction decidable__AFbar any: any x decidable__and2 decidable__lt decidable__assert decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  tcWO-induction lifting-strict-decide strict4-decide lifting-strict-less AF-induction2 AF-induction basic_strong_bar_induction decidable__AFbar decidable__and2 decidable__lt decidable__assert decidable__squash decidable__and decidable__less_than' decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[>:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.>[x;y];t.Q[t])  supposing  tcWO(T;x,y.>[x;y])



Date html generated: 2018_05_21-PM-00_03_12
Last ObjectModification: 2018_05_19-AM-07_11_18

Theory : bar-induction


Home Index