Nuprl Lemma : tcWO-induction-ext
∀[T:Type]. ∀[>:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.>[x;y];t.Q[t]) supposing tcWO(T;x,y.>[x;y])
Proof
Definitions occuring in Statement : 
tcWO: tcWO(T;x,y.>[x; y])
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
subtract: n - m
, 
isr: isr(x)
, 
bfalse: ff
, 
it: ⋅
, 
btrue: tt
, 
seq-normalize: seq-normalize(n;s)
, 
bottom: ⊥
, 
ifthenelse: if b then t else f fi 
, 
tcWO-induction, 
AF-induction2, 
AF-induction, 
basic_strong_bar_induction, 
decidable__AFbar, 
any: any x
, 
decidable__and2, 
decidable__lt, 
decidable__assert, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
decidable_functionality, 
squash_elim, 
sq_stable_from_decidable, 
iff_preserves_decidability, 
sq_stable__from_stable, 
stable__from_decidable, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
tcWO-induction, 
lifting-strict-decide, 
strict4-decide, 
lifting-strict-less, 
AF-induction2, 
AF-induction, 
basic_strong_bar_induction, 
decidable__AFbar, 
decidable__and2, 
decidable__lt, 
decidable__assert, 
decidable__squash, 
decidable__and, 
decidable__less_than', 
decidable_functionality, 
squash_elim, 
sq_stable_from_decidable, 
iff_preserves_decidability, 
sq_stable__from_stable, 
stable__from_decidable
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[>:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.>[x;y];t.Q[t])  supposing  tcWO(T;x,y.>[x;y])
Date html generated:
2018_05_21-PM-00_03_12
Last ObjectModification:
2018_05_19-AM-07_11_18
Theory : bar-induction
Home
Index