Nuprl Lemma : decidable__AFbar

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀n:ℕ. ∀s:AF-spread-law(x,y.R[x;y])-consistent-seq(n).  Dec(AFbar() s)


Proof




Definitions occuring in Statement :  AFbar: AFbar() AF-spread-law: AF-spread-law(x,y.R[x; y]) consistent-seq: R-consistent-seq(n) nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] unit: Unit apply: a function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] AFbar: AFbar() member: t ∈ T nat: consistent-seq: R-consistent-seq(n) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  decidable__and2 less_than_wf assert_wf isr_wf unit_wf2 subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top nat_wf minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__lt not-lt-2 add-mul-special zero-mul le-add-cancel-alt and_wf le_wf decidable__assert consistent-seq_wf AF-spread-law_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis isect_memberEquality cumulativity applyEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination voidElimination productElimination independent_functionElimination independent_isectElimination addEquality lambdaEquality voidEquality minusEquality intEquality because_Cache unionEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}n:\mBbbN{}.  \mforall{}s:AF-spread-law(x,y.R[x;y])-consistent-seq(n).    Dec(AFbar()  n  s)



Date html generated: 2016_05_13-PM-03_51_01
Last ObjectModification: 2015_12_26-AM-10_17_26

Theory : bar-induction


Home Index