Nuprl Lemma : basic_strong_bar_induction

[T:Type]. ∀[R:n:ℕ ⟶ (ℕn ⟶ T) ⟶ T ⟶ ℙ]. ∀[B,A:n:ℕ ⟶ R-consistent-seq(n) ⟶ ℙ].
  ((∀n:ℕ. ∀s:R-consistent-seq(n).  Dec(B[n;s]))
   (∀n:ℕ. ∀s:R-consistent-seq(n).  (B[n;s]  A[n;s]))
   (∀n:ℕ. ∀s:R-consistent-seq(n).  ((∀t:{t:T| t} A[n 1;s.t@n])  A[n;s]))
   (∀alpha:{f:ℕ ⟶ T| ∀x:ℕ(R (f x))} (↓∃m:ℕB[m;alpha]))
   (∀x:Top. A[0;x]))


Proof




Definitions occuring in Statement :  consistent-seq: R-consistent-seq(n) seq-add: s.x@n int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s1;s2] consistent-seq: R-consistent-seq(n) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T so_apply: x[s] cand: c∧ B guard: {T} exists: x:A. B[x] prop: top: Top istype: istype(T) true: True subtract: m sq_stable: SqStable(P) uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P)
Lemmas referenced :  istype-top subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self squash_wf exists_wf subtype_rel_dep_function subtype_rel_sets_simple and_wf le_wf less_than_wf istype-int less_than_transitivity2 le_weakening2 istype-le istype-less_than consistent-seq_wf decidable_wf istype-nat istype-universe seq-normalize_wf less_than_irreflexivity less_than_transitivity1 subtype_rel-equal istype-void subtype_rel_sets all_wf bar_recursion_wf_strong seq-add_wf_consistent le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 decidable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid hypothesis sqequalRule functionIsType setIsType because_Cache universeIsType hypothesisEquality applyEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaEquality_alt dependent_set_memberEquality_alt productElimination imageElimination inhabitedIsType intEquality dependent_functionElimination productIsType instantiate universeEquality equalityIsType1 functionExtensionality_alt voidElimination isect_memberEquality_alt independent_functionElimination equalitySymmetry equalityTransitivity cumulativity setEquality functionEquality functionExtensionality minusEquality baseClosed imageMemberEquality unionElimination addEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[B,A:n:\mBbbN{}  {}\mrightarrow{}  R-consistent-seq(n)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}n:\mBbbN{}.  \mforall{}s:R-consistent-seq(n).    Dec(B[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:R-consistent-seq(n).    (B[n;s]  {}\mRightarrow{}  A[n;s]))
    {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:R-consistent-seq(n).    ((\mforall{}t:\{t:T|  R  n  s  t\}  .  A[n  +  1;s.t@n])  {}\mRightarrow{}  A[n;s]))
    {}\mRightarrow{}  (\mforall{}alpha:\{f:\mBbbN{}  {}\mrightarrow{}  T|  \mforall{}x:\mBbbN{}.  (R  x  f  (f  x))\}  .  (\mdownarrow{}\mexists{}m:\mBbbN{}.  B[m;alpha]))
    {}\mRightarrow{}  (\mforall{}x:Top.  A[0;x]))



Date html generated: 2020_05_19-PM-09_35_52
Last ObjectModification: 2020_01_04-PM-07_56_43

Theory : bar-induction


Home Index