Nuprl Lemma : seq-add_wf_consistent
∀T:Type. ∀R:n:ℕ ⟶ (ℕn ⟶ T) ⟶ T ⟶ ℙ. ∀n:ℕ. ∀s:R-consistent-seq(n). ∀t:T.
  ((R n s t) 
⇒ (s.t@n ∈ R-consistent-seq(n + 1)))
Proof
Definitions occuring in Statement : 
consistent-seq: R-consistent-seq(n)
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
consistent-seq: R-consistent-seq(n)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
seq-add: s.x@n
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
subtract: n - m
, 
top: Top
, 
true: True
Lemmas referenced : 
seq-add_wf, 
int_seg_wf, 
all_wf, 
nat_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
and_wf, 
le_wf, 
less_than_wf, 
less_than_transitivity2, 
le_weakening2, 
consistent-seq_wf, 
decidable__int_equal, 
sq_stable__le, 
equal_wf, 
subtype_rel_self, 
subtype_rel_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
le_antisymmetry_iff, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
zero-add, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel2, 
decidable__lt, 
not-lt-2, 
not-equal-2, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
hypothesis, 
addEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
independent_pairFormation, 
intEquality, 
setEquality, 
productElimination, 
dependent_functionElimination, 
functionEquality, 
universeEquality, 
unionElimination, 
int_eqReduceTrueSq, 
addLevel, 
hyp_replacement, 
equalitySymmetry, 
levelHypothesis, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
instantiate, 
applyLambdaEquality, 
equalityElimination, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
impliesFunctionality, 
int_eqReduceFalseSq, 
isect_memberEquality, 
voidEquality, 
minusEquality
Latex:
\mforall{}T:Type.  \mforall{}R:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.  \mforall{}s:R-consistent-seq(n).  \mforall{}t:T.
    ((R  n  s  t)  {}\mRightarrow{}  (s.t@n  \mmember{}  R-consistent-seq(n  +  1)))
Date html generated:
2017_04_14-AM-07_26_34
Last ObjectModification:
2017_02_27-PM-02_55_55
Theory : bar-induction
Home
Index