Nuprl Lemma : seq-add_wf_consistent

T:Type. ∀R:n:ℕ ⟶ (ℕn ⟶ T) ⟶ T ⟶ ℙ. ∀n:ℕ. ∀s:R-consistent-seq(n). ∀t:T.
  ((R t)  (s.t@n ∈ R-consistent-seq(n 1)))


Proof




Definitions occuring in Statement :  consistent-seq: R-consistent-seq(n) seq-add: s.x@n int_seg: {i..j-} nat: prop: all: x:A. B[x] implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T consistent-seq: R-consistent-seq(n) uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A prop: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q seq-add: s.x@n sq_stable: SqStable(P) squash: T bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff exists: x:A. B[x] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q less_than: a < b subtract: m top: Top true: True
Lemmas referenced :  seq-add_wf int_seg_wf all_wf nat_wf int_seg_subtype_nat false_wf subtype_rel_dep_function subtype_rel_sets and_wf le_wf less_than_wf less_than_transitivity2 le_weakening2 consistent-seq_wf decidable__int_equal sq_stable__le equal_wf subtype_rel_self subtype_rel_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot le_antisymmetry_iff less-iff-le condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top zero-add add_functionality_wrt_le add-commutes le-add-cancel2 decidable__lt not-lt-2 not-equal-2 le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality applyEquality natural_numberEquality hypothesis addEquality because_Cache sqequalRule lambdaEquality independent_isectElimination independent_pairFormation intEquality setEquality productElimination dependent_functionElimination functionEquality universeEquality unionElimination int_eqReduceTrueSq addLevel hyp_replacement equalitySymmetry levelHypothesis independent_functionElimination imageMemberEquality baseClosed imageElimination equalityTransitivity instantiate applyLambdaEquality equalityElimination voidElimination dependent_pairFormation promote_hyp impliesFunctionality int_eqReduceFalseSq isect_memberEquality voidEquality minusEquality

Latex:
\mforall{}T:Type.  \mforall{}R:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}n:\mBbbN{}.  \mforall{}s:R-consistent-seq(n).  \mforall{}t:T.
    ((R  n  s  t)  {}\mRightarrow{}  (s.t@n  \mmember{}  R-consistent-seq(n  +  1)))



Date html generated: 2017_04_14-AM-07_26_34
Last ObjectModification: 2017_02_27-PM-02_55_55

Theory : bar-induction


Home Index