Nuprl Lemma : band-sqequal-inl
∀[a,b,c:Base].  {(a ~ inl outl(a)) ∧ (b ~ inl outl(b))} supposing a ∧b b ~ inl c
Proof
Definitions occuring in Statement : 
band: p ∧b q
, 
outl: outl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
inl: inl x
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
cand: A c∧ B
, 
or: P ∨ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
outr: outr(x)
, 
false: False
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
true: True
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
outl: outl(x)
Lemmas referenced : 
has-value-band-type, 
union-value-type, 
base_wf, 
value-type-has-value, 
top_wf, 
has-value-implies-dec-isinl-2, 
equal_wf, 
sqequal-wf-base, 
all_wf, 
not_all_sqequal, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
baseClosed, 
closedConclusion, 
baseApply, 
sqequalIntensionalEquality, 
axiomSqEquality, 
independent_pairEquality, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
inlEquality, 
independent_isectElimination, 
voidEquality, 
unionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
independent_pairFormation, 
unionElimination, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation, 
lambdaEquality, 
voidElimination, 
promote_hyp, 
intEquality, 
cumulativity, 
instantiate, 
natural_numberEquality
Latex:
\mforall{}[a,b,c:Base].    \{(a  \msim{}  inl  outl(a))  \mwedge{}  (b  \msim{}  inl  outl(b))\}  supposing  a  \mwedge{}\msubb{}  b  \msim{}  inl  c
Date html generated:
2019_06_20-AM-11_32_18
Last ObjectModification:
2018_10_11-PM-06_54_13
Theory : bool_1
Home
Index