Nuprl Lemma : band-sqequal-inl

[a,b,c:Base].  {(a inl outl(a)) ∧ (b inl outl(b))} supposing a ∧b inl c


Proof




Definitions occuring in Statement :  band: p ∧b q outl: outl(x) uimplies: supposing a uall: [x:A]. B[x] guard: {T} and: P ∧ Q inl: inl x base: Base sqequal: t
Definitions unfolded in proof :  and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] guard: {T} cand: c∧ B or: P ∨ Q implies:  Q all: x:A. B[x] prop: so_apply: x[s] so_lambda: λ2x.t[x] outr: outr(x) false: False ifthenelse: if then else fi  band: p ∧b q true: True sq_type: SQType(T) bfalse: ff outl: outl(x)
Lemmas referenced :  has-value-band-type union-value-type base_wf value-type-has-value top_wf has-value-implies-dec-isinl-2 equal_wf sqequal-wf-base all_wf not_all_sqequal int_subtype_base subtype_base_sq
Rules used in proof :  because_Cache isect_memberEquality baseClosed closedConclusion baseApply sqequalIntensionalEquality axiomSqEquality independent_pairEquality productElimination equalitySymmetry equalityTransitivity hypothesisEquality inlEquality independent_isectElimination voidEquality unionEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution independent_pairFormation unionElimination independent_functionElimination dependent_functionElimination lambdaFormation lambdaEquality voidElimination promote_hyp intEquality cumulativity instantiate natural_numberEquality

Latex:
\mforall{}[a,b,c:Base].    \{(a  \msim{}  inl  outl(a))  \mwedge{}  (b  \msim{}  inl  outl(b))\}  supposing  a  \mwedge{}\msubb{}  b  \msim{}  inl  c



Date html generated: 2019_06_20-AM-11_32_18
Last ObjectModification: 2018_10_11-PM-06_54_13

Theory : bool_1


Home Index