Nuprl Lemma : bimplies_transitivity

[u,v,w:𝔹].  (↑(u b w)) supposing ((↑(v b w)) and (↑(u b v)))


Proof




Definitions occuring in Statement :  bimplies: b q assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  bimplies: b q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bnot: ¬bb ifthenelse: if then else fi  bor: p ∨bq bfalse: ff assert: b prop: exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} false: False true: True
Lemmas referenced :  bool_wf eqtt_to_assert assert_witness assert_wf true_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert_of_bnot false_wf bor_wf bnot_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination productElimination independent_isectElimination because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity voidElimination natural_numberEquality axiomEquality

Latex:
\mforall{}[u,v,w:\mBbbB{}].    (\muparrow{}(u  {}\mRightarrow{}\msubb{}  w))  supposing  ((\muparrow{}(v  {}\mRightarrow{}\msubb{}  w))  and  (\muparrow{}(u  {}\mRightarrow{}\msubb{}  v)))



Date html generated: 2019_06_20-AM-11_31_22
Last ObjectModification: 2018_08_27-PM-03_39_42

Theory : bool_1


Home Index