Nuprl Lemma : fix_wf_corec_parameter2
∀[F,A:Type ⟶ Type].
  ∀[G:Top ⟶ Top ⟶ Top ⋂ ⋂T:Type. ((A[T] ⟶ T) ⟶ A[F[T]] ⟶ F[T])]. ∀[a:A[corec(T.F[T])]].
    (fix(G) a ∈ corec(T.F[T])) 
  supposing Continuous+(T.A[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
strong-type-continuous: Continuous+(T.F[T])
, 
isect2: T1 ⋂ T2
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
member: t ∈ T
, 
apply: f a
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
corec: corec(T.F[T])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
bfalse: ff
, 
top: Top
, 
nat: ℕ
, 
prop: ℙ
Lemmas referenced : 
fix_wf_corec2, 
continuous-function, 
continuous-id, 
subtype_rel_self, 
nat_wf, 
isect2_subtype_rel3, 
top_wf, 
subtype_rel_wf, 
bool_wf, 
primrec_wf, 
int_seg_wf, 
corec_wf, 
isect2_wf, 
strong-type-continuous_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isect_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
universeEquality, 
independent_isectElimination, 
hypothesis, 
isectEquality, 
cumulativity, 
unionElimination, 
equalityElimination, 
instantiate, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[F,A:Type  {}\mrightarrow{}  Type].
    \mforall{}[G:Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  Top  \mcap{}  \mcap{}T:Type.  ((A[T]  {}\mrightarrow{}  T)  {}\mrightarrow{}  A[F[T]]  {}\mrightarrow{}  F[T])].  \mforall{}[a:A[corec(T.F[T])]].
        (fix(G)  a  \mmember{}  corec(T.F[T])) 
    supposing  Continuous+(T.A[T])
Date html generated:
2016_05_14-AM-06_19_21
Last ObjectModification:
2015_12_26-PM-00_02_34
Theory : co-recursion
Home
Index