Nuprl Lemma : in-bar-equal
∀[T:Type]. ∀x:bar-base(T). ∀b:T.  (bar-equal(T;x;in-bar(b)) 
⇐⇒ x↓b)
Proof
Definitions occuring in Statement : 
bar-equal: bar-equal(T;x;y)
, 
bar-converges: x↓a
, 
in-bar: in-bar(b)
, 
bar-base: bar-base(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
bar-equal: bar-equal(T;x;y)
, 
bar-converges: x↓a
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
bar-val: bar-val(n;x)
, 
in-bar: in-bar(b)
Lemmas referenced : 
bar-equal_wf, 
in-bar_wf, 
bar-converges_wf, 
bar-base_wf, 
false_wf, 
le_wf, 
unit_wf2, 
equal_wf, 
bar-val_wf, 
in-bar-converges, 
bar-converges-unique, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
inlEquality, 
unionEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:bar-base(T).  \mforall{}b:T.    (bar-equal(T;x;in-bar(b))  \mLeftarrow{}{}\mRightarrow{}  x\mdownarrow{}b)
Date html generated:
2016_10_21-AM-09_47_40
Last ObjectModification:
2016_07_12-AM-05_07_45
Theory : co-recursion
Home
Index