Nuprl Lemma : in-bar-equal

[T:Type]. ∀x:bar-base(T). ∀b:T.  (bar-equal(T;x;in-bar(b)) ⇐⇒ x↓b)


Proof




Definitions occuring in Statement :  bar-equal: bar-equal(T;x;y) bar-converges: x↓a in-bar: in-bar(b) bar-base: bar-base(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q bar-equal: bar-equal(T;x;y) bar-converges: x↓a exists: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A bar-val: bar-val(n;x) in-bar: in-bar(b)
Lemmas referenced :  bar-equal_wf in-bar_wf bar-converges_wf bar-base_wf false_wf le_wf unit_wf2 equal_wf bar-val_wf in-bar-converges bar-converges-unique and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality dependent_functionElimination productElimination independent_functionElimination dependent_pairFormation dependent_set_memberEquality natural_numberEquality sqequalRule inlEquality unionEquality applyEquality lambdaEquality setElimination rename setEquality equalitySymmetry hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:bar-base(T).  \mforall{}b:T.    (bar-equal(T;x;in-bar(b))  \mLeftarrow{}{}\mRightarrow{}  x\mdownarrow{}b)



Date html generated: 2016_10_21-AM-09_47_40
Last ObjectModification: 2016_07_12-AM-05_07_45

Theory : co-recursion


Home Index