Nuprl Lemma : pcw-path-rel_wf

[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P]. ∀[f,g:Path].
  (pcw-path-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];f;g) ∈ ℙ)


Proof




Definitions occuring in Statement :  pcw-path-rel: pcw-path-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) pcw-path: Path uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pcw-path-rel: pcw-path-rel(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b];f;g) prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nat: pcw-path: Path subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q all: x:A. B[x] exists: x:A. B[x]
Lemmas referenced :  pcw-consistent-paths_wf exists_wf nat_wf all_wf int_seg_wf not_wf pcw-final-step_wf int_seg_subtype_nat false_wf pcw-path_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality because_Cache hypothesis natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation lambdaFormation axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].  \mforall{}[f,g:Path].
    (pcw-path-rel(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b];f;g)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_12_51
Last ObjectModification: 2015_12_26-PM-00_05_56

Theory : co-recursion


Home Index