Nuprl Lemma : all-quotient-true3

T:Type. (canonicalizable(T)  (∀P:T ⟶ ℙ(∀t:T. ⇃(P[t]) ⇐⇒ ⇃(∀t:T. P[t]))))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q canonicalizable: canonicalizable(T) exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q guard: {T} isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  iff_weakening_equal implies-quotient-true equiv_rel_true true_wf quotient_wf all_wf subtype_rel_self isect2_subtype_rel subtype_rel_dep_function isect2_subtype_rel2 base_wf isect2_wf all-quotient-true2 canonicalizable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin functionEquality cumulativity hypothesisEquality universeEquality cut lemma_by_obid isectElimination hypothesis dependent_functionElimination independent_functionElimination applyEquality instantiate sqequalRule lambdaEquality independent_isectElimination independent_pairFormation functionExtensionality because_Cache isect_memberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}T:Type.  (canonicalizable(T)  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}t:T.  \00D9(P[t])  \mLeftarrow{}{}\mRightarrow{}  \00D9(\mforall{}t:T.  P[t]))))



Date html generated: 2016_05_14-PM-09_42_10
Last ObjectModification: 2016_05_10-AM-11_31_10

Theory : continuity


Home Index