Nuprl Lemma : all-quotient-true3
∀T:Type. (canonicalizable(T) 
⇒ (∀P:T ⟶ ℙ. (∀t:T. ⇃(P[t]) 
⇐⇒ ⇃(∀t:T. P[t]))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
canonicalizable: canonicalizable(T)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
canonicalizable: canonicalizable(T)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
iff_weakening_equal, 
implies-quotient-true, 
equiv_rel_true, 
true_wf, 
quotient_wf, 
all_wf, 
subtype_rel_self, 
isect2_subtype_rel, 
subtype_rel_dep_function, 
isect2_subtype_rel2, 
base_wf, 
isect2_wf, 
all-quotient-true2, 
canonicalizable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
instantiate, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
independent_pairFormation, 
functionExtensionality, 
because_Cache, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}T:Type.  (canonicalizable(T)  {}\mRightarrow{}  (\mforall{}P:T  {}\mrightarrow{}  \mBbbP{}.  (\mforall{}t:T.  \00D9(P[t])  \mLeftarrow{}{}\mRightarrow{}  \00D9(\mforall{}t:T.  P[t]))))
Date html generated:
2016_05_14-PM-09_42_10
Last ObjectModification:
2016_05_10-AM-11_31_10
Theory : continuity
Home
Index