Nuprl Lemma : extl2Cantor_wf

[s:𝔹 List]. ∀[b:𝔹].  (extl2Cantor(s;b) ∈ ℕ ⟶ 𝔹)


Proof




Definitions occuring in Statement :  extl2Cantor: extl2Cantor(s;b) list: List nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T extl2Cantor: extl2Cantor(s;b) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: bfalse: ff
Lemmas referenced :  lt_int_wf length_wf bool_wf eqtt_to_assert assert_of_lt_int select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf nat_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis hypothesisEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_functionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality

Latex:
\mforall{}[s:\mBbbB{}  List].  \mforall{}[b:\mBbbB{}].    (extl2Cantor(s;b)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2017_04_17-AM-09_58_03
Last ObjectModification: 2017_02_27-PM-05_51_02

Theory : continuity


Home Index