Nuprl Lemma : increasing-sequence-prop1

a:ℕ ⟶ ℕ(increasing-sequence(a)  (∀n,m:ℕ.  ((n ≤ m)  ((a n) ≤ (a m)))))


Proof




Definitions occuring in Statement :  increasing-sequence: increasing-sequence(a) nat: le: A ≤ B all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  increasing-sequence: increasing-sequence(a) subtype_rel: A ⊆B le: A ≤ B guard: {T} sq_type: SQType(T) prop: and: P ∧ Q top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  uall: [x:A]. B[x] nat: member: t ∈ T exists: x:A. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  and_wf less_than'_wf less_than_wf ge_wf int_formula_prop_less_lemma intformless_wf increasing-sequence_wf nat_wf int_subtype_base subtype_base_sq equal_wf int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf decidable__equal_int le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtract_wf
Rules used in proof :  applyLambdaEquality hyp_replacement axiomEquality independent_pairEquality intWeakElimination functionEquality applyEquality functionExtensionality independent_functionElimination equalitySymmetry equalityTransitivity cumulativity instantiate promote_hyp productElimination addEquality computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality independent_isectElimination unionElimination natural_numberEquality dependent_functionElimination hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid introduction dependent_set_memberEquality dependent_pairFormation cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (increasing-sequence(a)  {}\mRightarrow{}  (\mforall{}n,m:\mBbbN{}.    ((n  \mleq{}  m)  {}\mRightarrow{}  ((a  n)  \mleq{}  (a  m)))))



Date html generated: 2017_04_20-AM-07_36_37
Last ObjectModification: 2017_04_18-AM-05_58_51

Theory : continuity


Home Index