Nuprl Lemma : strong-continuity2-implies-weak-skolem2

F:(ℕ ⟶ 𝔹) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] weak-continuity-skolem: weak-continuity-skolem(T;F) uall: [x:A]. B[x] member: t ∈ T implies:  Q equipollent: B exists: x:A. B[x] pi1: fst(t) and: P ∧ Q cand: c∧ B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: squash: T subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  equipollent_inversion equipollent-two istype-nat bool_wf compose_wf nat_wf int_seg_wf Kleene-M_wf int_seg_subtype_nat istype-false decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than subtype_rel_wf squash_wf implies-quotient-true basic-strong-continuity_wf weak-continuity-skolem_wf basic-implies-strong-continuity2 strong-continuity2-weak-skolem weak-continuity-skolem_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_functionElimination hypothesis rename Error :functionIsType,  Error :universeIsType,  Error :lambdaEquality_alt,  applyEquality hypothesisEquality closedConclusion natural_numberEquality productElimination sqequalRule Error :inhabitedIsType,  Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination Error :dependent_set_memberEquality_alt,  independent_isectElimination independent_pairFormation unionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :productIsType,  imageMemberEquality baseClosed

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2019_06_20-PM-02_51_42
Last ObjectModification: 2019_02_09-PM-11_57_48

Theory : continuity


Home Index