Nuprl Lemma : strong-continuity2-implies-weak-skolem2
∀F:(ℕ ⟶ 𝔹) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕM f ⟶ 𝔹)) 
⇒ ((F f) = (F g) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
weak-continuity-skolem: weak-continuity-skolem(T;F)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
equipollent: A ~ B
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
prop: ℙ
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
equipollent_inversion, 
equipollent-two, 
istype-nat, 
bool_wf, 
compose_wf, 
nat_wf, 
int_seg_wf, 
Kleene-M_wf, 
int_seg_subtype_nat, 
istype-false, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
subtype_rel_wf, 
squash_wf, 
implies-quotient-true, 
basic-strong-continuity_wf, 
weak-continuity-skolem_wf, 
basic-implies-strong-continuity2, 
strong-continuity2-weak-skolem, 
weak-continuity-skolem_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
rename, 
Error :functionIsType, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
closedConclusion, 
natural_numberEquality, 
productElimination, 
sqequalRule, 
Error :inhabitedIsType, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
Error :dependent_set_memberEquality_alt, 
independent_isectElimination, 
independent_pairFormation, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :productIsType, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
Date html generated:
2019_06_20-PM-02_51_42
Last ObjectModification:
2019_02_09-PM-11_57_48
Theory : continuity
Home
Index