Nuprl Lemma : l_before_l_index
∀[T:Type]
  ∀dT:EqDecider(T). ∀L:T List. ∀x,y:T.  ((x ∈ L) ⇒ (y ∈ L) ⇒ x before y ∈ L supposing index(L;x) < index(L;y))
Proof
Definitions occuring in Statement : 
l_index: index(L;x), 
l_before: x before y ∈ l, 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
prop: ℙ, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
member-less_than, 
l_index_wf, 
int_seg_wf, 
length_wf, 
less_than_wf, 
l_member_wf, 
list_wf, 
deq_wf, 
l_before_select, 
l_before_wf, 
squash_wf, 
true_wf, 
equal_wf, 
select_l_index, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
natural_numberEquality, 
sqequalRule, 
universeEquality, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
imageElimination, 
equalityTransitivity, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type]
    \mforall{}dT:EqDecider(T).  \mforall{}L:T  List.  \mforall{}x,y:T.
        ((x  \mmember{}  L)  {}\mRightarrow{}  (y  \mmember{}  L)  {}\mRightarrow{}  x  before  y  \mmember{}  L  supposing  index(L;x)  <  index(L;y))
Date html generated:
2017_04_17-AM-09_16_02
Last ObjectModification:
2017_02_27-PM-05_21_10
Theory : decidable!equality
Home
Index