Nuprl Lemma : round-robin-member

[T:Type]. ∀L:T List. ∀n:ℕ(round-robin(L) n ∈ L) supposing 0 < ||L||


Proof




Definitions occuring in Statement :  round-robin: round-robin(L) l_member: (x ∈ l) length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  round-robin: round-robin(L) uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T int_seg: {i..j-} int_nzero: -o nequal: a ≠ b ∈  nat: ge: i ≥  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] lelt: i ≤ j < k nat_plus: + decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T
Lemmas referenced :  member-less_than length_wf select_member remainder_wfa nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf length_wf_nat set_subtype_base le_wf int_subtype_base nequal_wf rem_bounds_1 decidable__lt intformnot_wf int_formula_prop_not_lemma istype-less_than istype-le istype-nat list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality hypothesis independent_isectElimination rename dependent_functionElimination Error :dependent_set_memberEquality_alt,  because_Cache setElimination equalityTransitivity equalitySymmetry approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  Error :equalityIstype,  Error :inhabitedIsType,  applyEquality intEquality baseClosed sqequalBase unionElimination imageElimination productElimination Error :productIsType,  instantiate

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}n:\mBbbN{}.  (round-robin(L)  n  \mmember{}  L)  supposing  0  <  ||L||



Date html generated: 2019_06_20-PM-01_56_44
Last ObjectModification: 2019_03_06-AM-10_52_15

Theory : decidable!equality


Home Index