Nuprl Lemma : assert-product-deq

[A,B:Type]. ∀[a:EqDecider(A)]. ∀[b:EqDecider(B)]. ∀[x,y:A × B].  uiff(↑(product-deq(A;B;a;b) y);x y ∈ (A × B))


Proof




Definitions occuring in Statement :  product-deq: product-deq(A;B;a;b) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  product-deq: product-deq(A;B;a;b) proddeq: proddeq(a;b) pi1: fst(t) pi2: snd(t) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: uall: [x:A]. B[x] deq: EqDecider(T) cand: c∧ B implies:  Q iff: ⇐⇒ Q rev_implies:  Q eqof: eqof(d) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  assert_wf band_wf iff_transitivity eqof_wf and_wf equal_wf iff_weakening_uiff assert_of_band safe-assert-deq assert_witness product-deq_wf deq_wf pi2_wf pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule productElimination thin independent_pairFormation isect_memberFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination applyEquality setElimination rename hypothesisEquality introduction addLevel independent_functionElimination because_Cache lambdaFormation independent_isectElimination productEquality independent_pairEquality lambdaEquality universeEquality isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry promote_hyp

Latex:
\mforall{}[A,B:Type].  \mforall{}[a:EqDecider(A)].  \mforall{}[b:EqDecider(B)].  \mforall{}[x,y:A  \mtimes{}  B].
    uiff(\muparrow{}(product-deq(A;B;a;b)  x  y);x  =  y)



Date html generated: 2016_05_14-AM-06_07_27
Last ObjectModification: 2015_12_26-AM-11_46_32

Theory : equality!deciders


Home Index