Nuprl Lemma : equipollent-product-zero

[A:Type]. (A × ℕ~ ℕ0 ∧ ℕ0 × ~ ℕ0)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] and: P ∧ Q product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T equipollent: B exists: x:A. B[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A all: x:A. B[x] top: Top prop: biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) iff: ⇐⇒ Q
Lemmas referenced :  ext-eq_weakening equipollent_weakening_ext-eq equipollent-product-com equipollent_functionality_wrt_equipollent equal_wf biject_wf int_seg_wf lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf satisfiable-full-omega-tt int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut independent_pairFormation hypothesis universeEquality dependent_pairFormation lambdaEquality dependent_set_memberEquality productElimination thin lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality because_Cache hypothesisEquality setElimination rename independent_isectElimination int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule computeAll productEquality cumulativity lambdaFormation equalityTransitivity equalitySymmetry applyEquality setEquality independent_functionElimination

Latex:
\mforall{}[A:Type].  (A  \mtimes{}  \mBbbN{}0  \msim{}  \mBbbN{}0  \mwedge{}  \mBbbN{}0  \mtimes{}  A  \msim{}  \mBbbN{}0)



Date html generated: 2016_05_14-PM-04_01_07
Last ObjectModification: 2016_01_14-PM-11_06_34

Theory : equipollence!!cardinality!


Home Index