Nuprl Lemma : equipollent-product-zero
∀[A:Type]. (A × ℕ0 ~ ℕ0 ∧ ℕ0 × A ~ ℕ0)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
product: x:A × B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
prop: ℙ, 
biject: Bij(A;B;f), 
inject: Inj(A;B;f), 
surject: Surj(A;B;f), 
iff: P ⇐⇒ Q
Lemmas referenced : 
ext-eq_weakening, 
equipollent_weakening_ext-eq, 
equipollent-product-com, 
equipollent_functionality_wrt_equipollent, 
equal_wf, 
biject_wf, 
int_seg_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
universeEquality, 
dependent_pairFormation, 
lambdaEquality, 
dependent_set_memberEquality, 
productElimination, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
independent_isectElimination, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
productEquality, 
cumulativity, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setEquality, 
independent_functionElimination
Latex:
\mforall{}[A:Type].  (A  \mtimes{}  \mBbbN{}0  \msim{}  \mBbbN{}0  \mwedge{}  \mBbbN{}0  \mtimes{}  A  \msim{}  \mBbbN{}0)
Date html generated:
2016_05_14-PM-04_01_07
Last ObjectModification:
2016_01_14-PM-11_06_34
Theory : equipollence!!cardinality!
Home
Index