Nuprl Lemma : empty-fset-contains-none-of
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[cs:fset(fset(T))].  ↑fset-contains-none-of(eq;{};cs) supposing ¬{} ∈ cs
Proof
Definitions occuring in Statement : 
fset-contains-none-of: fset-contains-none-of(eq;s;cs)
, 
deq-fset: deq-fset(eq)
, 
empty-fset: {}
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
assert-fset-contains-none-of, 
empty-fset_wf, 
equal-wf-T-base, 
fset_wf, 
f-subset-empty, 
f-subset_wf, 
not_wf, 
fset-member_wf, 
deq-fset_wf, 
fset-contains-none-of_wf, 
deq_wf, 
assert_witness, 
and_wf, 
equal_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
baseClosed, 
addLevel, 
impliesFunctionality, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
universeEquality, 
isect_memberFormation, 
sqequalRule, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[cs:fset(fset(T))].
    \muparrow{}fset-contains-none-of(eq;\{\};cs)  supposing  \mneg{}\{\}  \mmember{}  cs
Date html generated:
2016_10_21-AM-10_44_47
Last ObjectModification:
2016_07_12-AM-05_51_40
Theory : finite!sets
Home
Index