Nuprl Lemma : empty-fset-contains-none-of

[T:Type]. ∀[eq:EqDecider(T)]. ∀[cs:fset(fset(T))].  ↑fset-contains-none-of(eq;{};cs) supposing ¬{} ∈ cs


Proof




Definitions occuring in Statement :  fset-contains-none-of: fset-contains-none-of(eq;s;cs) deq-fset: deq-fset(eq) empty-fset: {} fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a all: x:A. B[x] implies:  Q not: ¬A false: False prop: iff: ⇐⇒ Q
Lemmas referenced :  assert-fset-contains-none-of empty-fset_wf equal-wf-T-base fset_wf f-subset-empty f-subset_wf not_wf fset-member_wf deq-fset_wf fset-contains-none-of_wf deq_wf assert_witness and_wf equal_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality cumulativity hypothesis productElimination independent_isectElimination lambdaFormation baseClosed addLevel impliesFunctionality because_Cache independent_functionElimination voidElimination universeEquality isect_memberFormation sqequalRule isect_memberEquality equalityTransitivity equalitySymmetry hyp_replacement dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality setElimination rename setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[cs:fset(fset(T))].
    \muparrow{}fset-contains-none-of(eq;\{\};cs)  supposing  \mneg{}\{\}  \mmember{}  cs



Date html generated: 2016_10_21-AM-10_44_47
Last ObjectModification: 2016_07_12-AM-05_51_40

Theory : finite!sets


Home Index