Nuprl Lemma : fset-absorption1

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a,b:fset(T)].  (a ⋃ a ⋂ a ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-intersection: a ⋂ b fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q implies:  Q prop: all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-extensionality fset-union_wf fset-intersection_wf fset-member_witness or_wf fset-member_wf and_wf member-fset-union member-fset-intersection uiff_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_pairFormation unionElimination because_Cache independent_functionElimination rename inlFormation addLevel dependent_functionElimination orFunctionality cumulativity sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a,b:fset(T)].    (a  \mcup{}  a  \mcap{}  b  =  a)



Date html generated: 2016_05_14-PM-03_40_23
Last ObjectModification: 2015_12_26-PM-06_41_20

Theory : finite!sets


Home Index