Nuprl Lemma : fset-closure-exists2

[T:Type]
  ∀eq:EqDecider(T). ∀r:T ⟶ ℕ. ∀fs:{f:T ⟶ T| ∀x:T. (f x) < supposing ¬((f x) x ∈ T)}  List. ∀s:fset(T).
    ∃c:fset(T). (c fs closure of s)


Proof




Definitions occuring in Statement :  fset-closure: (c fs closure of s) fset: fset(T) list: List deq: EqDecider(T) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a prop: not: ¬A implies:  Q false: False nat: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T}
Lemmas referenced :  fset-closure-exists subtype_rel_list not_wf equal_wf less_than_wf istype-void istype-less_than fset_wf list_wf istype-nat deq_wf istype-universe l_all_iff l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination applyEquality setEquality functionEquality sqequalRule isectEquality hypothesis because_Cache independent_isectElimination lambdaEquality_alt setElimination rename setIsType functionIsType universeIsType isectIsType equalityIstype instantiate universeEquality inhabitedIsType productElimination independent_functionElimination

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}r:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}fs:\{f:T  {}\mrightarrow{}  T|  \mforall{}x:T.  r  (f  x)  <  r  x  supposing  \mneg{}((f  x)  =  x)\}    List.
    \mforall{}s:fset(T).
        \mexists{}c:fset(T).  (c  =  fs  closure  of  s)



Date html generated: 2020_05_19-PM-09_52_43
Last ObjectModification: 2020_01_04-PM-08_00_05

Theory : finite!sets


Home Index