Nuprl Lemma : fset-contains-none-of-closed-downward

[T:Type]. ∀[eq:EqDecider(T)]. ∀[cs:fset(fset(T))].
  ∀x,y:fset(T).  (y ⊆  (↑fset-contains-none-of(eq;x;cs))  (↑fset-contains-none-of(eq;y;cs)))


Proof




Definitions occuring in Statement :  fset-contains-none-of: fset-contains-none-of(eq;s;cs) f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) assert: b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a
Lemmas referenced :  f-subset_wf fset-member_wf fset_wf deq-fset_wf all_wf not_wf assert-fset-contains-none-of assert_wf fset-contains-none-of_wf deq_wf assert_witness f-subset_transitivity
Rules used in proof :  cut thin sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution independent_functionElimination voidElimination lemma_by_obid isectElimination hypothesisEquality because_Cache sqequalRule lambdaEquality functionEquality addLevel impliesFunctionality productElimination independent_isectElimination universeEquality isect_memberFormation introduction dependent_functionElimination isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[cs:fset(fset(T))].
    \mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}fset-contains-none-of(eq;x;cs))  {}\mRightarrow{}  (\muparrow{}fset-contains-none-of(eq;y;cs)))



Date html generated: 2016_05_14-PM-03_42_11
Last ObjectModification: 2015_12_26-PM-06_39_52

Theory : finite!sets


Home Index