Nuprl Lemma : fset-pair-is-union
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  ({x,y} = {x} ⋃ {y} ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-pair: {a,b}
, 
fset-singleton: {x}
, 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
fset-extensionality, 
fset-pair_wf, 
fset-union_wf, 
fset-singleton_wf, 
fset-member_witness, 
member-fset-pair, 
member-fset-singleton, 
fset-member_wf, 
or_wf, 
equal_wf, 
member-fset-union, 
uiff_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
addLevel, 
orFunctionality, 
promote_hyp, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].    (\{x,y\}  =  \{x\}  \mcup{}  \{y\})
Date html generated:
2017_04_17-AM-09_19_00
Last ObjectModification:
2017_02_27-PM-05_22_25
Theory : finite!sets
Home
Index