Nuprl Lemma : fset-pair-is-union

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  ({x,y} {x} ⋃ {y} ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-pair: {a,b} fset-singleton: {x} fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q all: x:A. B[x] prop: or: P ∨ Q rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  fset-extensionality fset-pair_wf fset-union_wf fset-singleton_wf fset-member_witness member-fset-pair member-fset-singleton fset-member_wf or_wf equal_wf member-fset-union uiff_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality cumulativity hypothesis productElimination independent_isectElimination independent_pairFormation independent_functionElimination rename dependent_functionElimination addLevel orFunctionality promote_hyp sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].    (\{x,y\}  =  \{x\}  \mcup{}  \{y\})



Date html generated: 2017_04_17-AM-09_19_00
Last ObjectModification: 2017_02_27-PM-05_22_25

Theory : finite!sets


Home Index