Nuprl Lemma : div_div_commutes
∀[a:ℤ]. ∀[n,m:ℤ-o]. (a ÷ n ÷ m ~ a ÷ m ÷ n)
Proof
Definitions occuring in Statement :
int_nzero: ℤ-o
,
uall: ∀[x:A]. B[x]
,
divide: n ÷ m
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
int_nzero: ℤ-o
,
subtype_rel: A ⊆r B
,
top: Top
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
and: P ∧ Q
,
prop: ℙ
Lemmas referenced :
div_div,
equal_wf,
int_formula_prop_wf,
int_formula_prop_not_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_and_lemma,
intformnot_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
intformand_wf,
satisfiable-full-omega-tt,
int_nzero_properties,
int_entire_a,
mul-commutes,
int_nzero_wf,
int_subtype_base,
subtype_base_sq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
hypothesis,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
sqequalAxiom,
sqequalRule,
isect_memberEquality,
hypothesisEquality,
because_Cache,
setElimination,
rename,
applyEquality,
lambdaEquality,
voidElimination,
voidEquality,
divideEquality,
multiplyEquality,
lambdaFormation,
natural_numberEquality,
dependent_pairFormation,
int_eqEquality,
independent_pairFormation,
computeAll
Latex:
\mforall{}[a:\mBbbZ{}]. \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}]. (a \mdiv{} n \mdiv{} m \msim{} a \mdiv{} m \mdiv{} n)
Date html generated:
2016_05_14-AM-07_24_48
Last ObjectModification:
2016_01_14-PM-10_01_32
Theory : int_2
Home
Index