Nuprl Lemma : div_div_commutes

[a:ℤ]. ∀[n,m:ℤ-o].  (a ÷ n ÷ a ÷ m ÷ n)


Proof




Definitions occuring in Statement :  int_nzero: -o uall: [x:A]. B[x] divide: n ÷ m int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} int_nzero: -o subtype_rel: A ⊆B top: Top nequal: a ≠ b ∈  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop:
Lemmas referenced :  div_div equal_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt int_nzero_properties int_entire_a mul-commutes int_nzero_wf int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom sqequalRule isect_memberEquality hypothesisEquality because_Cache setElimination rename applyEquality lambdaEquality voidElimination voidEquality divideEquality multiplyEquality lambdaFormation natural_numberEquality dependent_pairFormation int_eqEquality independent_pairFormation computeAll

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  n  \mdiv{}  m  \msim{}  a  \mdiv{}  m  \mdiv{}  n)



Date html generated: 2016_05_14-AM-07_24_48
Last ObjectModification: 2016_01_14-PM-10_01_32

Theory : int_2


Home Index