Nuprl Lemma : div_div_commutes
∀[a:ℤ]. ∀[n,m:ℤ-o].  (a ÷ n ÷ m ~ a ÷ m ÷ n)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
int_nzero: ℤ-o
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
div_div, 
equal_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_nzero_properties, 
int_entire_a, 
mul-commutes, 
int_nzero_wf, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
voidElimination, 
voidEquality, 
divideEquality, 
multiplyEquality, 
lambdaFormation, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n,m:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  n  \mdiv{}  m  \msim{}  a  \mdiv{}  m  \mdiv{}  n)
Date html generated:
2016_05_14-AM-07_24_48
Last ObjectModification:
2016_01_14-PM-10_01_32
Theory : int_2
Home
Index