Nuprl Lemma : div_fun_sat_div_nrel
∀[a:ℕ]. ∀[n:ℕ+].  Div(a;n;a ÷ n)
Proof
Definitions occuring in Statement : 
div_nrel: Div(a;n;q), 
nat_plus: ℕ+, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
divide: n ÷ m
Definitions unfolded in proof : 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
prop: ℙ, 
top: Top, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
ge: i ≥ j , 
nequal: a ≠ b ∈ T , 
nat_plus: ℕ+, 
nat: ℕ, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
le: A ≤ B, 
and: P ∧ Q, 
lelt: i ≤ j < k, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
div_nrel: Div(a;n;q), 
less_than: a < b, 
squash: ↓T, 
decidable: Dec(P), 
or: P ∨ Q
Lemmas referenced : 
nat_wf, 
nat_plus_wf, 
false_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
intformle_wf, 
itermAdd_wf, 
itermMultiply_wf, 
multiply-is-int-iff, 
member-less_than, 
int_subtype_base, 
equal-wf-base, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
nat_plus_properties, 
less_than'_wf, 
rem_bounds_1, 
div_rem_sum, 
nat_plus_inc_int_nzero, 
decidable__le, 
istype-int, 
istype-void, 
add-is-int-iff, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt
Rules used in proof : 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
addEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
baseClosed, 
applyEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
lambdaFormation, 
divideEquality, 
multiplyEquality, 
hypothesis, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
because_Cache, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
independent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution, 
Error :lambdaFormation_alt, 
imageElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :equalityIstype, 
Error :inhabitedIsType, 
sqequalBase, 
unionElimination
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    Div(a;n;a  \mdiv{}  n)
Date html generated:
2019_06_20-PM-01_14_17
Last ObjectModification:
2019_01_28-PM-03_17_33
Theory : int_2
Home
Index