Nuprl Lemma : exp_wf

[n:ℕ]. ∀[i:ℕ+].  (i^n ∈ ℕ+)


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  exp: i^n uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_plus_wf primrec-unroll decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma ifthenelse_wf eq_int_wf mul_nat_plus nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality imageMemberEquality baseClosed unionElimination because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}\msupplus{}].    (i\^{}n  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2017_04_14-AM-09_22_07
Last ObjectModification: 2017_02_27-PM-03_57_29

Theory : int_2


Home Index