Nuprl Lemma : rem_eq_args
∀[a:ℕ+]. ((a rem a) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rem_rec_case, 
nat_plus_subtype_nat, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
subtype_rel_self, 
iff_weakening_equal, 
minus-one-mul, 
add-mul-special, 
zero-mul, 
rem-zero, 
nat_plus_inc_int_nzero, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
cut, 
applyEquality, 
thin, 
Error :lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
Error :universeIsType, 
Error :inhabitedIsType, 
instantiate, 
universeEquality, 
intEquality, 
sqequalRule, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[a:\mBbbN{}\msupplus{}].  ((a  rem  a)  =  0)
Date html generated:
2019_06_20-PM-01_15_07
Last ObjectModification:
2019_01_01-PM-01_15_22
Theory : int_2
Home
Index