Nuprl Lemma : rem_eq_args

[a:ℕ+]. ((a rem a) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  nat_plus: + uall: [x:A]. B[x] remainder: rem m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtract: m
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe rem_rec_case nat_plus_subtype_nat nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermVar_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf subtype_rel_self iff_weakening_equal minus-one-mul add-mul-special zero-mul rem-zero nat_plus_inc_int_nzero nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut applyEquality thin Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  instantiate universeEquality intEquality sqequalRule independent_isectElimination setElimination rename dependent_functionElimination because_Cache unionElimination natural_numberEquality approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[a:\mBbbN{}\msupplus{}].  ((a  rem  a)  =  0)



Date html generated: 2019_06_20-PM-01_15_07
Last ObjectModification: 2019_01_01-PM-01_15_22

Theory : int_2


Home Index