Nuprl Lemma : insert_property

[T:Type]
  ∀eq:EqDecider(T). ∀a:T. ∀L:T List.
    ((∀b:T. ((b ∈ insert(a;L)) ⇐⇒ (b a ∈ T) ∨ (b ∈ L))) ∧ no_repeats(T;insert(a;L)) supposing no_repeats(T;L))


Proof




Definitions occuring in Statement :  insert: insert(a;L) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T implies:  Q decidable: Dec(P) or: P ∨ Q and: P ∧ Q uimplies: supposing a cand: c∧ B iff: ⇐⇒ Q guard: {T} prop: rev_implies:  Q uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable__l_member decidable-equal-deq list_wf deq_wf insert-cases equal_wf l_member_wf and_wf or_wf no_repeats_witness no_repeats_wf no_repeats_cons cons_wf cons_member all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis cumulativity universeEquality unionElimination productElimination independent_isectElimination independent_pairFormation sqequalRule inrFormation equalitySymmetry dependent_set_memberEquality applyEquality lambdaEquality setElimination rename setEquality hyp_replacement Error :applyLambdaEquality,  addLevel allFunctionality impliesFunctionality productEquality isectEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}a:T.  \mforall{}L:T  List.
        ((\mforall{}b:T.  ((b  \mmember{}  insert(a;L))  \mLeftarrow{}{}\mRightarrow{}  (b  =  a)  \mvee{}  (b  \mmember{}  L)))
        \mwedge{}  no\_repeats(T;insert(a;L))  supposing  no\_repeats(T;L))



Date html generated: 2016_10_21-AM-09_51_48
Last ObjectModification: 2016_07_12-AM-05_10_20

Theory : list_0


Home Index