Nuprl Lemma : insert-cases

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a:T]. ∀[L:T List].
  (insert(a;L) supposing (a ∈ L) ∧ insert(a;L) [a L] supposing ¬(a ∈ L))


Proof




Definitions occuring in Statement :  insert: insert(a;L) l_member: (x ∈ l) cons: [a b] list: List deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T insert: insert(a;L) and: P ∧ Q uimplies: supposing a prop: subtype_rel: A ⊆B top: Top cand: c∧ B not: ¬A implies:  Q false: False has-value: (a)↓ all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt iff: ⇐⇒ Q rev_implies:  Q ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  list_wf deq_wf l_member_wf not_wf subtype_rel_list top_wf value-type-has-value list-value-type deq-member_wf bool_wf equal-wf-T-base assert_wf bnot_wf eval_list_sq iff_transitivity iff_weakening_uiff eqtt_to_assert assert-deq-member eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality sqequalAxiom hypothesis because_Cache equalityTransitivity equalitySymmetry extract_by_obid cumulativity universeEquality applyEquality independent_isectElimination lambdaEquality voidElimination voidEquality baseClosed independent_pairFormation independent_functionElimination callbyvalueReduce lambdaFormation unionElimination equalityElimination dependent_functionElimination impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a:T].  \mforall{}[L:T  List].
    (insert(a;L)  \msim{}  L  supposing  (a  \mmember{}  L)  \mwedge{}  insert(a;L)  \msim{}  [a  /  L]  supposing  \mneg{}(a  \mmember{}  L))



Date html generated: 2017_04_14-AM-08_53_39
Last ObjectModification: 2017_02_27-PM-03_37_49

Theory : list_0


Home Index