Nuprl Lemma : insert-cases
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[a:T]. ∀[L:T List].
  (insert(a;L) ~ L supposing (a ∈ L) ∧ insert(a;L) ~ [a / L] supposing ¬(a ∈ L))
Proof
Definitions occuring in Statement : 
insert: insert(a;L), 
l_member: (x ∈ l), 
cons: [a / b], 
list: T List, 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
insert: insert(a;L), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
top: Top, 
cand: A c∧ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
has-value: (a)↓, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
list_wf, 
deq_wf, 
l_member_wf, 
not_wf, 
subtype_rel_list, 
top_wf, 
value-type-has-value, 
list-value-type, 
deq-member_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
eval_list_sq, 
iff_transitivity, 
iff_weakening_uiff, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
sqequalAxiom, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
cumulativity, 
universeEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
voidElimination, 
voidEquality, 
baseClosed, 
independent_pairFormation, 
independent_functionElimination, 
callbyvalueReduce, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a:T].  \mforall{}[L:T  List].
    (insert(a;L)  \msim{}  L  supposing  (a  \mmember{}  L)  \mwedge{}  insert(a;L)  \msim{}  [a  /  L]  supposing  \mneg{}(a  \mmember{}  L))
 Date html generated: 
2017_04_14-AM-08_53_39
 Last ObjectModification: 
2017_02_27-PM-03_37_49
Theory : list_0
Home
Index