Nuprl Lemma : null_filter
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  ↑null(filter(P;L)) supposing (∀x∈L.¬↑P[x])
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
null: null(as)
, 
filter: filter(P;l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
Lemmas referenced : 
assert_of_null, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
filter_is_nil, 
nil_wf, 
assert_witness, 
null_wf, 
l_all_wf, 
not_wf, 
assert_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    \muparrow{}null(filter(P;L))  supposing  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}P[x])
Date html generated:
2016_05_14-AM-06_51_34
Last ObjectModification:
2015_12_26-PM-00_21_55
Theory : list_0
Home
Index