Nuprl Lemma : null_filter

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  ↑null(filter(P;L)) supposing (∀x∈L.¬↑P[x])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) null: null(as) filter: filter(P;l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) implies:  Q
Lemmas referenced :  assert_of_null filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf filter_is_nil nil_wf assert_witness null_wf l_all_wf not_wf assert_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule lambdaEquality hypothesis setEquality independent_isectElimination setElimination rename because_Cache lambdaFormation productElimination independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    \muparrow{}null(filter(P;L))  supposing  (\mforall{}x\mmember{}L.\mneg{}\muparrow{}P[x])



Date html generated: 2016_05_14-AM-06_51_34
Last ObjectModification: 2015_12_26-PM-00_21_55

Theory : list_0


Home Index