Nuprl Lemma : l_member!_wf
∀[T:Type]. ∀[l:T List]. ∀[x:T]. ((x ∈! l) ∈ ℙ)
Proof
Definitions occuring in Statement :
l_member!: (x ∈! l)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
l_member!: (x ∈! l)
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
cand: A c∧ B
,
nat: ℕ
,
and: P ∧ Q
,
uimplies: b supposing a
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
so_apply: x[s]
Lemmas referenced :
exists_wf,
nat_wf,
less_than_wf,
length_wf,
equal_wf,
select_wf,
nat_properties,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
all_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
lambdaEquality,
productEquality,
setElimination,
rename,
because_Cache,
cumulativity,
hypothesisEquality,
independent_isectElimination,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
functionEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[l:T List]. \mforall{}[x:T]. ((x \mmember{}! l) \mmember{} \mBbbP{})
Date html generated:
2017_04_17-AM-07_27_18
Last ObjectModification:
2017_02_27-PM-04_05_48
Theory : list_1
Home
Index