Nuprl Lemma : l_sum-mapfilter-upto

[n:ℕ]. ∀[P:ℕn ⟶ 𝔹]. ∀[f:{x:ℕn| ↑(P x)}  ⟶ ℤ].
  (l_sum(mapfilter(f;P;upto(n))) = Σ(if then else fi  i < n) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) upto: upto(n) mapfilter: mapfilter(f;P;L) sum: Σ(f[x] x < k) int_seg: {i..j-} nat: assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: and: P ∧ Q prop: squash: T so_lambda: λ2x.t[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) uimplies: supposing a bfalse: ff so_apply: x[s] true: True
Lemmas referenced :  int_seg_wf istype-assert istype-int bool_wf istype-nat l_sum-mapfilter upto_wf l_member_wf assert_wf equal_wf squash_wf true_wf istype-universe length_upto sum_wf select-upto eqtt_to_assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis functionIsType setIsType universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality applyEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType because_Cache functionExtensionality dependent_set_memberEquality_alt productElimination setEquality closedConclusion productEquality hyp_replacement equalitySymmetry lambdaEquality_alt imageElimination equalityTransitivity instantiate universeEquality intEquality lambdaFormation_alt unionElimination equalityElimination independent_isectElimination equalityIstype dependent_functionElimination independent_functionElimination imageMemberEquality baseClosed

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{x:\mBbbN{}n|  \muparrow{}(P  x)\}    {}\mrightarrow{}  \mBbbZ{}].
    (l\_sum(mapfilter(f;P;upto(n)))  =  \mSigma{}(if  P  i  then  f  i  else  0  fi    |  i  <  n))



Date html generated: 2020_05_19-PM-09_46_06
Last ObjectModification: 2020_01_01-AM-10_05_43

Theory : list_1


Home Index