Nuprl Lemma : l_sum-mapfilter
ā[T:Type]. ā[L:T List]. ā[P:T ā¶ š¹]. ā[f:{x:T| (x ā L) ā§ (ā(P x))} ā¶ ā¤].
(l_sum(mapfilter(f;P;L)) = Ī£(if P L[i] then f L[i] else 0 fi | i < ||L||) ā ā¤)
Proof
Definitions occuring in Statement :
l_sum: l_sum(L)
,
mapfilter: mapfilter(f;P;L)
,
sum: Ī£(f[x] | x < k)
,
l_member: (x ā l)
,
select: L[n]
,
length: ||as||
,
list: T List
,
assert: āb
,
ifthenelse: if b then t else f fi
,
bool: š¹
,
uall: ā[x:A]. B[x]
,
and: P ā§ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ā¶ B[x]
,
natural_number: $n
,
int: ā¤
,
universe: Type
,
equal: s = t ā T
Definitions unfolded in proof :
mapfilter: mapfilter(f;P;L)
,
uall: ā[x:A]. B[x]
,
member: t ā T
,
all: āx:A. B[x]
,
nat: ā
,
implies: P
ā Q
,
false: False
,
ge: i ā„ j
,
uimplies: b supposing a
,
not: Ā¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: āx:A. B[x]
,
top: Top
,
and: P ā§ Q
,
prop: ā
,
guard: {T}
,
or: P āØ Q
,
select: L[n]
,
nil: []
,
it: ā
,
so_lambda: Ī»2x y.t[x; y]
,
so_apply: x[s1;s2]
,
sum: Ī£(f[x] | x < k)
,
sum_aux: sum_aux(k;v;i;x.f[x])
,
cons: [a / b]
,
le: A ā¤ B
,
less_than': less_than'(a;b)
,
colength: colength(L)
,
so_lambda: Ī»2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: āT
,
decidable: Dec(P)
,
subtype_rel: A ār B
,
l_sum: l_sum(L)
,
cand: A cā§ B
,
iff: P
āā Q
,
rev_implies: P
ā Q
,
uiff: uiff(P;Q)
,
int_seg: {i..j-}
,
lelt: i ā¤ j < k
,
bool: š¹
,
unit: Unit
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: Ā¬bb
,
assert: āb
,
true: True
Lemmas referenced :
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
intformeq_wf,
int_formula_prop_eq_lemma,
list-cases,
filter_nil_lemma,
length_of_nil_lemma,
stuck-spread,
istype-base,
map_nil_lemma,
product_subtype_list,
colength-cons-not-zero,
colength_wf_list,
istype-false,
le_wf,
istype-universe,
l_member_wf,
assert_wf,
bool_wf,
subtract-1-ge-0,
subtype_base_sq,
set_subtype_base,
int_subtype_base,
spread_cons_lemma,
decidable__equal_int,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
itermAdd_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
int_term_value_add_lemma,
decidable__le,
filter_cons_lemma,
length_of_cons_lemma,
nat_wf,
list_wf,
nil_wf,
reduce_nil_lemma,
subtype_rel_dep_function,
cons_wf,
subtype_rel_sets,
cons_member,
sum_split,
length_wf,
add_nat_wf,
length_wf_nat,
add-is-int-iff,
false_wf,
select_wf,
int_seg_properties,
non_neg_length,
decidable__lt,
eqtt_to_assert,
select_member,
eqff_to_assert,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
int_seg_wf,
sum1,
int_seg_subtype_special,
int_seg_cases,
map_cons_lemma,
reduce_cons_lemma,
uiff_transitivity,
equal-wf-T-base,
bnot_wf,
not_wf,
assert_of_bnot,
sum_wf,
squash_wf,
true_wf,
select-cons-tl,
add-subtract-cancel,
satisfiable-full-omega-tt
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
Error :isect_memberFormation_alt,
introduction,
cut,
thin,
Error :lambdaFormation_alt,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
Error :dependent_pairFormation_alt,
Error :lambdaEquality_alt,
int_eqEquality,
dependent_functionElimination,
Error :isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
Error :universeIsType,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
Error :functionIsTypeImplies,
Error :inhabitedIsType,
unionElimination,
baseClosed,
promote_hyp,
hypothesis_subsumption,
productElimination,
Error :equalityIsType1,
because_Cache,
Error :dependent_set_memberEquality_alt,
Error :functionIsType,
Error :setIsType,
Error :productIsType,
applyEquality,
instantiate,
imageElimination,
Error :equalityIsType4,
baseApply,
closedConclusion,
intEquality,
universeEquality,
functionExtensionality,
productEquality,
cumulativity,
setEquality,
functionEquality,
isect_memberFormation,
voidEquality,
isect_memberEquality,
Error :inrFormation_alt,
addEquality,
pointwiseFunctionality,
equalityElimination,
Error :inlFormation_alt,
imageMemberEquality,
computeAll,
lambdaEquality,
dependent_pairFormation
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[f:\{x:T| (x \mmember{} L) \mwedge{} (\muparrow{}(P x))\} {}\mrightarrow{} \mBbbZ{}].
(l\_sum(mapfilter(f;P;L)) = \mSigma{}(if P L[i] then f L[i] else 0 fi | i < ||L||))
Date html generated:
2019_06_20-PM-01_44_12
Last ObjectModification:
2018_10_06-PM-11_55_51
Theory : list_1
Home
Index